
Stephen Checkoway

Programming Abstractions
Exam 1 Review



Exam Format

Take home exam


4 implementation problems ("Write a procedure to do x")


Write all of your solutions in DrRacket


Turn in your completed exam by pushing to GitHub


Exam will be released at midnight on Monday (you’ll receive an email from Ed)


Your solutions are due by 23:59 on Monday (you have 24 hours)



Class time

During Monday's class, I will be in my office, feel free to stop by to ask any 
questions about the exam


So no normal lecture on Monday



Possible question topics

Basic Scheme/Racket functions and special forms

‣ cons, first (car), rest (cdr), list, append, member, empty?, filter, etc.

‣ define, lambda, if, cond, let, letrec, and, or, etc.


map and apply


foldl and foldr and how they differ


Recursion

‣ Tail recursion

‣ "Accumulator passing style"


Closures: how to create and use them



Given a list lst and an element x, how can we create a new list that 
consists of x prepended to lst? E.g., if lst is '(1 2 3) and x is 4, we 
want '(4 1 2 3)

A. (prepend x lst)

B. (cons x lst)

C. (append x lst)

D. It's not possible to modify lst

E. None of the above

5



Given a list lst and an element x, how can we create a new list that 
consists of x appended to lst? E.g., if lst is '(1 2 3) and x is 4, we 
want '(1 2 3 4)

A. (cons lst x)

B. (append lst x)


C. (append lst '(x))


D. (append lst (list x))


E. None of the above

6



Given a list of lists, lsts, how do you get a list containing the second element 
of each list, in order?

A. (map second lsts)

B. (map rest lsts)

C. (apply second lsts)

D. (apply rest lsts)


E. None of the above

7



Drop

Write a procedure (drop lst n) that takes a list and an integer and returns a list 
consisting of the elements of lst except for the first n elements


(drop '(1 2 3) 0) => '(1 2 3)

(drop '(1 2 3) 2) => '(3)

(drop '(1 2 3) 4) => (error 'drop "list too short")



Select

Represent a student as a three-element list (name year gpa), e.g., 
'("Jane" 2 3.5) represents Jane who is a second-year and has a 3.5 GPA

Write a procedure (select lst) that takes a list of students and returns the 
name of all second or third year students with a GPA that's at least 3.0



Enumerate

Write a recursive procedure (enumerate lst) that takes a list and returns a 
list of 2-element lists (index elem) where elem is in lst and index is its 
index, in order.


E.g., (enumerate '(a b c)) returns '((0 a) (1 b) (2 c))



Tail-recursive enumerate

Write a tail-recursive procedure (enumerate2 lst) that takes a list and 
returns a list of 2-element lists (index elem) where elem is in lst and 
index is its index, in order.


E.g., (enumerate2 '(a b c)) returns '((0 a) (1 b) (2 c))



Flip

Write a procedure (flip f) that that takes a 2-argument procedure f and 
returns a 2-argument closure that, when called, calls f with its arguments in the 
opposite order. I.e., ((flip f) x y) is the same as (f y x)

Write (flip* f) that takes any procedure f and returns a closure that, when 
called, calls f with all of its arguments reversed. E.g.,
‣ ((flip* f)) is (f);
‣ ((flip* g) x) is (g x);
‣ ((flip* h) x y) is (h y x);
‣ ((flip* i) x y z) is (i z y x); and so forth



Reverse a structured (non-flat) list

Write a procedure (reverse-all lst) that takes a non-flat list and reverse it, 
including all contained lists


E.g., (reverse-all '(1 () (2 3 (4 5)) 6)) returns 
'(6 ((5 4) 3 2) () 1)


